SUMMARY REPORT
202 CAMELLIA DRIVE (FORMERLY 671 CAMELLIA DRIVE)
LAUREL BAY MILITARY HOUSING AREA
MARINE CORPS AIR STATION BEAUFORT
BEAUFORT, SC

Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid-Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095 SUMMARY REPORT
202 CAMELLIA DRIVE (FORMERLY 671 CAMELLIA DRIVE)
LAUREL BAY MILITARY HOUSING AREA
MARINE CORPS AIR STATION BEAUFORT
BEAUFORT, SC

Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid- Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic

9324 Virginia Avenue Norfolk, Virginia 23511-3095

Prepared by:

CDM - AECOM Multimedia Joint Venture 10560 Arrowhead Drive, Suite 500 Fairfax, Virginia 22030

Contract Number: N62470-14-D-9016

CTO WE52

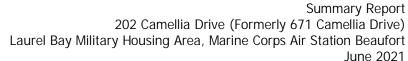

JUNE 2021

Table of Contents

1.0	INTRODUC	TION1	l
1.1 1.2		ND INFORMATION	
2.0	SAMPLING	ACTIVITIES AND RESULTS	}
2.1 2.2		VAL AND SOIL SAMPLING	
3.0	PROPERTY	STATUS	ļ
4.0	REFERENC	ES	ļ
Table	1	Table Laboratory Analytical Results - Soil	
		Appendices	
Appen Appen Appen	dix B	Multi-Media Selection Process for LBMH UST Assesment Report Regulatory Correspondence	

List of Acronyms

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

CTO Contract Task Order

COPC constituents of potential concern

IDIQ Indefinite Delivery, Indefinite Quantity

IGWA Initial Groundwater Assessment

JV Joint Venture

LBMH Laurel Bay Military Housing MCAS Marine Corps Air Station

NAVFAC Mid-Lant Naval Facilities Engineering Command Mid-Atlantic

NFA No Further Action

PAH polynuclear aromatic hydrocarbon

QAPP Quality Assurance Program Plan

RBSL risk-based screening level

SCDHEC South Carolina Department of Health and Environmental Control

Site LBMH area at MCAS Beaufort, South Carolina

UST underground storage tank

VISL vapor intrusion screening level

1.0 INTRODUCTION

The CDM - AECOM Multimedia Joint Venture (JV) was contracted by the Naval Facilities Engineering Command, Mid-Atlantic (NAVFAC Mid-Lant) to provide reporting services for the heating oil underground storage tanks (USTs) located in Laurel Bay Military Housing (LBMH) area at the Marine Corps Air Station (MCAS) Beaufort, South Carolina (Site). This work has been awarded under Contract Task Order (CTO) WE52 of the Indefinite Delivery, Indefinite Quantity (IDIQ) Multimedia Environmental Compliance Contract (Contract No. N62470-14-D-9016).

As of January 2014, the LBMH addresses were re-numbered to comply with the E-911 emergency response addressing system; however, in order to remain consistent with historical sampling and reporting for LBMH area, the residences will continue to be referenced with their original address numbers in sample nomenclature and reporting documents.

This report summarizes the results the environmental investigation activities associated with the storage of home heating oil and the potential release of petroleum constituents at the referenced property. Based on the results of the investigation, a No Further Action (NFA) determination has been made by the South Carolina Department of Health and Environmental Control (SCDHEC) for 202 Camellia Drive (Formerly 671 Camellia Drive). This NFA determination indicates that there are no unacceptable risks to human health or the environment for the petroleum constituents associated with the home heating oil USTs. The following information is included in this report:

- Background information;
- Sampling activities and results; and
- A determination of the property status.

1.1 Background Information

The LBMH area is located approximately 3.5 miles west of MCAS Beaufort. The area is approximately 970 acres in size and serves as an enlisted and officer family housing area. The area is configured with single family and duplex residential structures, and includes recreation, open space, and community facilities. The community includes approximately 1,300 housing units, including legacy Capehart style homes and newer duplex style homes. The housing area

is bordered on the west by salt marshes and the Broad River, and to the north, east and south by uplands. Forested areas lie along the northern and northeastern borders.

Capehart style homes within the LBMH area were formerly heated using heating oil stored in USTs at each residence. There were 1,100 Capehart style housing units in the LBMH area. The newer duplex homes within the LBMH area never utilized heating oil tanks. Heating oil has not been used at Laurel Bay since the mid-1980s. As was the accepted practice at the time, USTs were drained, filled with dirt, capped, and left in place when they were removed from service. Residential USTs are not regulated in the State of South Carolina (i.e., there are no federal or state laws governing installation, management, or removal).

In 2007, MCAS Beaufort began a voluntary program to remove the unregulated, residential USTs and conduct sampling activities to determine if, and to what extent, petroleum constituents may have impacted the surrounding environment. MCAS Beaufort coordinated with SCDHEC to develop removal procedures that were consistent with procedural requirements for regulated USTs. All tank removal activities and follow-on actions are conducted in coordination with SCDHEC. To date, all known USTs have been removed from all residential properties within the LBMH area.

1.2 UST Removal and Assessment Process

During the UST removal process, a soil sample was collected from beneath the UST excavations (approximately 4 to 6 feet [ft] below ground surface [bgs]) and analyzed for a predetermined list of constituents of potential concern (COPCs) associated with the petroleum compounds found in home heating oil. These COPCs, derived from the *Quality Assurance Program Plan (QAPP) for the Underground Storage Tank Management Division, Revision 3.1* (SCDHEC, 2016) and the *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service,* (SCDHEC, 2018), are as follows:

- benzene, toluene, ethylbenzene, and xylenes (BTEX),
- naphthalene, and
- five select polynuclear aromatic hydrocarbon (PAHs): benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene.

Soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form. In accordance with SCDHEC's *QAPP for the UST Management*

Division (SCDHEC, 2016), the soil screening levels consists of SCDHEC risk-based screening levels (RBSLs). It should be noted that the RBSLs for select PAHs were revised in Revision 2.0 of the QAPP (SCDHEC, 2013) and were revised again in Revision 3.0 (SCDHEC, 2015). The screening levels used for evaluation at each site were those levels that were in effect at the time of reporting and review by SCDHEC.

The results of the soil sampling at each former UST location were used to determine if a potential for groundwater contamination exists (i.e., soil results greater than RBSLs) and subsequently to select properties for follow-up initial groundwater assessment (IGWA) sampling. The results of the IGWA sampling (if necessary) are used to determine the presence or absence of the aforementioned COPCs in groundwater and identify whether former UST locations will require additional delineation of COPCs in groundwater. In order to delineate the extent of impact to groundwater, permanent wells are installed and a sampling program is established for those former UST locations where IGWA sampling has indicated the presence of COPCs in excess of the SCDHEC RBSLs for groundwater. Groundwater analytical results are also compared to the site specific groundwater vapor intrusion screening levels (VISLs) to evaluate the potential for vapor intrusion and the necessity for an investigation associated with this media. A multi-media investigation selection process tree, applicable to the LBMH UST investigations, is presented as Appendix A.

2.0 SAMPLING ACTIVITIES AND RESULTS

The following section presents the sampling activities and associated results for 202 Camellia Drive (Formerly 671 Camellia Drive). Details regarding the soil investigation at this site are provided in the *SCDHEC UST Assessment Report – 671 Camellia Drive* (MCAS Beaufort, 2015). The UST Assessment Report is provided in Appendix B.

2.1 UST Removal and Soil Sampling

On June 16, 2015, a single 280 gallon heating oil UST was removed from the front concrete porch area at 202 Camellia Drive (Formerly 671 Camellia Drive). The former UST location is indicated on Figures 1 and 2 of the UST Assessment Report (Appendix B). The UST was removed and properly disposed of (i.e., shipped offsite for recycling or transported to a landfill). There was no visual evidence (i.e., staining or sheen) of petroleum impact at the time of the UST removal. According to the UST Assessment Report (Appendix B), the depth to the base of

the UST was 5'11" bgs and a single soil sample was collected from that depth. The sample was collected from the fill port side of the former UST to represent a worst case scenario.

Following UST removal, a soil sample was collected from the base of the excavation and shipped to an offsite laboratory for analysis of the petroleum COPCs. Sampling was performed in accordance with applicable South Carolina regulation R.61-92, Part 280 (SCDHEC, 2017) and assessment guidelines.

2.2 Soil Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 1. A copy of the laboratory analytical data report is included in the UST Assessment Report presented in Appendix B. The laboratory analytical data report includes the soil results for the additional PAHs that were analyzed, but do not have associated RBSLs.

The soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form (Appendix B). The results of the soil sampling at the former UST location were used by MCAS Beaufort, in consultation with SCDHEC, to determine a path forward (i.e., additional sampling or NFA) for the property. The soil results collected from 202 Camellia Drive (Formerly 671 Camellia Drive) were less than the SCDHEC RBSLs, which indicated the subsurface was not impacted by COPCs associated with the former UST at concentrations that presented a potential risk to human health and the environment.

3.0 PROPERTY STATUS

Based on the analytical results for soil, SCDHEC made the determination that NFA was required for 202 Camellia Drive (Formerly 671 Camellia Drive). This NFA determination was obtained in a letter dated August 3, 2016. SCDHEC's NFA letter is provided in Appendix C.

4.0 REFERENCES

Marine Corps Air Station Beaufort, 2015. South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report – 671 Camellia Drive, Laurel Bay Military Housing Area, November 2015.

South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2013. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 2.0*, April 2013.

- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2015. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.0*, May 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2016. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.1*, February 2016.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2017. *R.61-92, Part 280, Underground Storage Tank Control Regulations*, March 2017.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2018. *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service*, March 2018.

Table

Table 1

Laboratory Analytical Results - Soil 202 Camellia Drive (Formerly 671 Camellia Drive) Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

Constituent	SCDHEC RBSLs (1)	Results Sample Collected 06/16/15
Volatile Organic Compounds Analyzed	by EPA Method 8260B (mg/kg)	
Benzene	0.003	ND
Ethylbenzene	1.15	ND
Naphthalene	0.036	ND
Toluene	0.627	ND
Xylenes, Total	13.01	ND
Semivolatile Organic Compounds Anal	yzed by EPA Method 8270D (mg/kg)	
Benzo(a)anthracene	0.66	ND
Benzo(b)fluoranthene	0.66	ND
Benzo(k)fluoranthene	0.66	ND
Chrysene	0.66	ND
Dibenz(a,h)anthracene	0.66	ND

Notes:

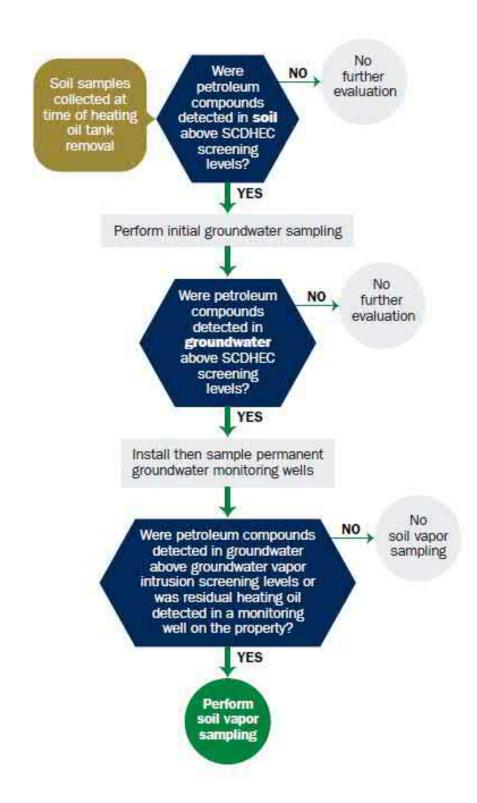
Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL.

EPA - United States Environmental Protection Agency

mg/kg - milligram per kilogram

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The laboratory report is provided in Appendix B.


RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 3.0 and 3.1 (SCDHEC, May 2015 and SCDHEC, February 2016) and the Underground Storage Tank Assessment Guidelines (SCDHEC, February 2006).

Appendix A Multi-Media Selection Process for LBMH

Appendix A - Multi-Media Selection Process for LBMH

Appendix B UST Assessment Report

South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Assessment Report

Date Received		
	State Use Only	

Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-7957

I. OWNERSHIP OF UST (S)

Area Code	Telephone Number	Contact Person	
843	228-7317	Craig Ehde	
City	State	Zip Code	
Beaufort,	South Carolina	29904-5001	
Mailing Address			
P.O. Box 55001			
Owner Name (Corporation,	Individual, Public Agency, Other)		
MCAS Beaufort, Com	manding Officer Attn: N	REAO (Craig Ehde)	
Particle Committee Committ			

II. SITE IDENTIFICATION AND LOCATION

Permit I.D. # Laurel Bay Militar Facility Name or Company	y Housing Area, Marine Corps Air Station, Beaufort, SC Site Identifier
671 Camellia Driv Street Address or State Road	e, Laurel Bay Military Housing Area (as applicable)
Beaufort,	Beaufort
City	County

Attachment 2

III. INSURANCE INFORMATION

	Insurance S	tatement	
qualify to receive state monies	to pay for appropriate site r fund, written confirmation o	at Permit ID Numberehabilitation activities. Before participe f the existence or non-existence of an extended.	nation is
UST release? YES	NO (check one)	olicy or other financial mechanism tha	
If you answered	YES to the above question.	, please complete the following inform	ation:
N T	My policy provider is: The policy deductible is: The policy limit is:		
If you have this type of	insurance, please include a	copy of the policy with this report.	
	IV. REQUEST FOR	R SUPERB FUNDING	
I DO / DO NOT wis	h to participate in the SUPE	RB Program. (Circle one.)	
V.	CERTIFICATION (To	be signed by the UST owner)	
I certify that I have personal	ly evamined and am fami	liar with the information submitted of those individuals responsible for true, accurate, and complete.	in this and all obtaining this
Name (Type or print.)			
Signature			
To be completed by Not	tary Public:		
Sworn before me this	day of	_, 20	
(Name)			
Notary Public for the state of	e commissioned outside Sou	uth Carolina	

osene)	Heating oil	
	280 gal	
	Late 1950s	
(ex. Steel, FRP)	Steel	
se	Mid 1980s	
Tank	5'11"	
ment Y/N	No	
uipment Y/N	No	
Removed/Filled	Removed	
Filled	6/16/2015	
itting Y/N	Yes	
	Yes	
any USTs removed from	the ground (attach disposal n	nanifests)
a was removed from andfill. See Attac	m the ground and dis chment "A".	sposed at a
E CONTRACTOR OF THE CONTRACTOR	*	
	a had been previo	any liquid petroleum, sludges, or wastewaters remove a had been previously filled with sa g, or holes were observed, describe the location and ex tting and holes were found throughou

VII. PIPING INFORMATION

	C+ c c 1	
	Steel	
Construction Material(ex. Steel, FRP)	& Copper	
Distance from UST to Dispenser	N/A	
Number of Dispensers	N/A	
Type of System Pressure or Suction	Suction	
Was Piping Removed from the Ground? Y/N	No	
Visible Corrosion or Pitting Y/N	Yes	
Visible Holes Y/N	No	
Age	Late 1950s	
If any corrosion, pitting, or holes were observed,	describe the location and extent for each p	ipin
If any corrosion, pitting, or holes were observed, Corrosion and pitting were foun pipe. Copper supply and return	d on the surface of the steel	
Corrosion and pitting were foun	d on the surface of the steel lines were sound. UPTION AND HISTORY onstructed of single wall steel for heating. These USTs were	Lve
Corrosion and pitting were foun pipe. Copper supply and return VIII. BRIEF SITE DESCRITHE USTs at the residences are can and formerly contained fuel oil	d on the surface of the steel lines were sound. UPTION AND HISTORY onstructed of single wall steel for heating. These USTs were	L ve
VIII. BRIEF SITE DESCRIPTION The USTs at the residences are can and formerly contained fuel oil	d on the surface of the steel lines were sound. UPTION AND HISTORY onstructed of single wall steel for heating. These USTs were	L ve

IX. SITE CONDITIONS

	Yes	No	Unk
A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells?		X	
If yes, indicate depth and location on the site map.			
B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells?		Х	
If yes, indicate location on site map and describe the odor (strong, mild, etc.)			
C. Was water present in the UST excavation, soil borings, or trenches?		Х	
If yes, how far below land surface (indicate location and depth)?			
D. Did contaminated soils remain stockpiled on site after closure?		х	
If yes, indicate the stockpile location on the site map.			
Name of DHEC representative authorizing soil removal:			
E. Was a petroleum sheen or free product detected on any excavation or boring waters?		х	
If yes, indicate location and thickness.			

X. SAMPLE INFORMATION

A. SCDHEC Lab Certification Number 84009

B.

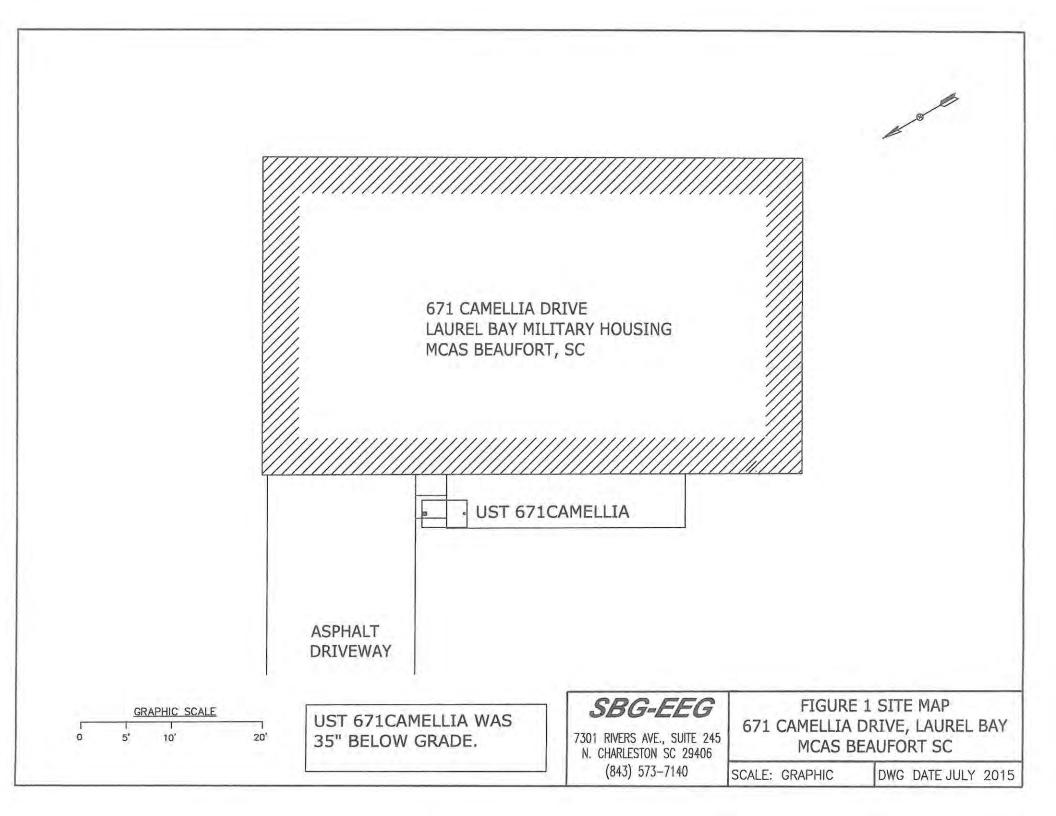
Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA#
671 Camellia	Excav at fill end	Soil	Sandy	5'11"	6/16/15 1145 hrs	P. Shaw	
8							
9							
10							
11					<u> </u>		
12							
13							
14							
15							
16							
17							
18							
19			(T				
20							

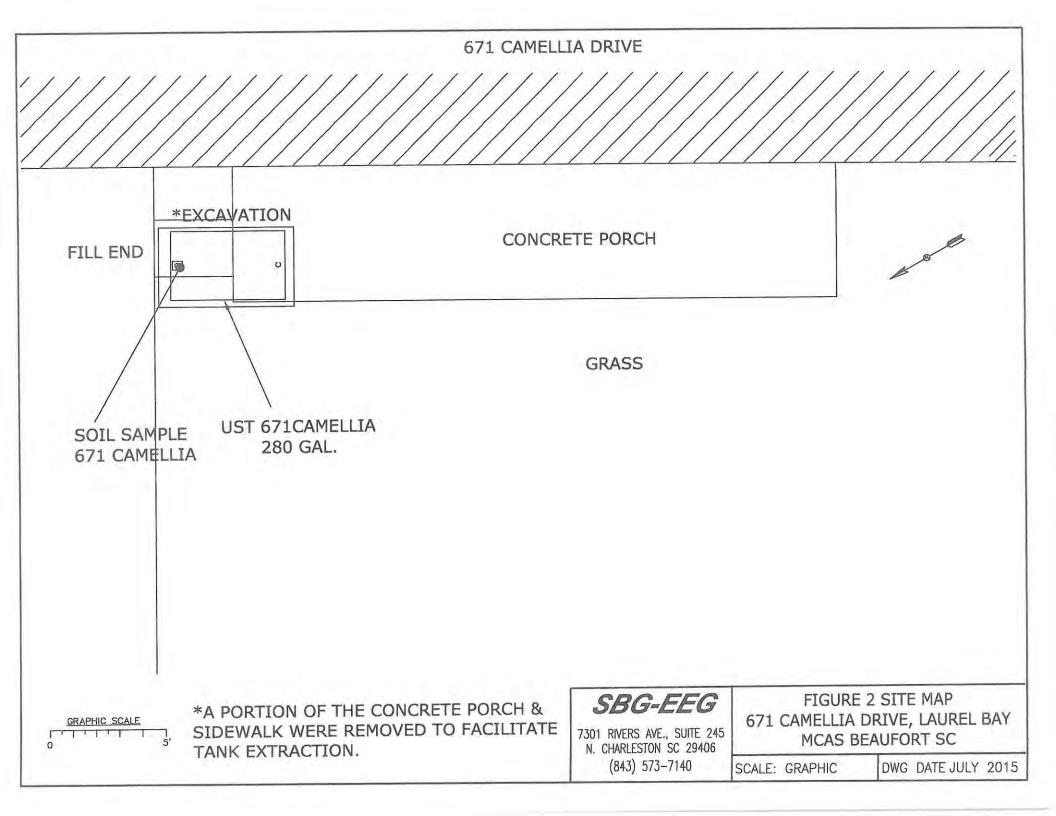
^{* =} Depth Below the Surrounding Land Surface

XI. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

Sampling was performed in accordance with SC DHEC R.61-92 Part 280
and SC DHEC Assessment Guidelines. Sample containers were prepared by the
testing laboratory. The grab method was utilized to fill the sample
containers leaving as little head space as possible and immediately
capped. Soil samples were extracted from area below tank. The
samples were marked, logged, and immediately placed in a sample cooler
packed with ice to maintain an approximate temperature of 4 degrees
Centigrade. Tools were thoroughly cleaned and decontaminated with
the seven step decon process after each use. The samples remained in
custody of SBG-EEG, Inc. until they were transferred to Test America
Incorporated for analysis as documented in the Chain of Custody Record.


XII. RECEPTORS


		Yes	No
A.	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system?		Х
	If yes, indicate type of receptor, distance, and direction on site map.		
В.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?		Х
	If yes, indicate type of well, distance, and direction on site map.		
C.	Are there any underground structures (e.g., basements) Located within 100 feet of the UST system?		Х
	If yes, indicate type of structure, distance, and direction on site map.		
D.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the contamination? *Sewer, water, electricity gas, water, electricity, gas, electricity, e	CC-200 0	22.1
	cable, fiber optic & geo If yes, indicate the type of utility, distance, and direction on the site map.	tner	naı
E.	Has contaminated soil been identified at a depth less than 3 feet below land surface in an area that is not capped by asphalt or concrete?		Х
	If yes, indicate the area of contaminated soil on the site map.		1

XIII. SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and dispenser island locations, labeled sample locations, extent of excavation, and any other pertinent information.

(Attach Site Map Here)

Picture 1: Location of UST 671Camellia.

Picture 2: Porch cut outline.

Picture 3: UST 671Camellia.

Picture 4: Tank pit.

XIV. SUMMARY OF ANALYSIS RESULTS

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

CoC UST	671Camellia						
Benzene	ND						
Toluene	ND						
Ethylbenzene	ND						
Xylenes	ND	N	ote:				
Naphthalene	ND		BTEX since	result there	s are i	ikely 10 dete is.	valid ctions
Benzo (a) anthracene	ND		in th	le PAH	analys	ís.	
Benzo (b) fluoranthene	ND						
Benzo (k) fluoranthene	ND						
Chrysene	ND						
Dibenz (a, h) anthracene	ND						
TPH (EPA 3550)							
CoC							
Benzene							
Toluene							
Ethylbenzene							
Xylenes							
Naphthalene							
Benzo (a) anthracene							
Benzo (b) fluoranthene							
Benzo (k) fluoranthene							
Chrysene							
Dibenz (a, h) anthracene							
TPH (EPA 3550)							

SUMMARY OF ANALYSIS RESULTS (cont'd)

Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

CoC	RBSL (µg/l)	W-1	W-2	W -3	W -4
Free Product Thickness	None				
Benzene	5				
Toluene	1,000				
Ethylbenzene	700				
Xylenes	10,000				
Total BTEX	N/A				
MTBE	40				
Naphthalene	25				
Benzo (a) anthracene	10				
Benzo (b) flouranthene	10				
Benzo (k) flouranthene	10				
Chrysene	10				
Dibenz (a, h) anthracene	10				
EDB	.05				
1,2-DCA	5				
Lead	Site specific				

XV. ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc. TestAmerica Nashville Nashville, TN 37204 Tel: (615)726-0177 Small Business Group Inc. 10179 Highway 78 Attn: Tom McElwee Kuth Hage Authorized for release by: 7/9/2015 4:37:14 PM (615)301-5035

ANALYTICAL REPORT

2960 Foster Creighton Drive

TestAmerica Job ID: 490-81095-1

Client Project/Site: Laurel Bay Housing Project

Ladson, South Carolina 29456

Ken Hayes, Project Manager II

ken.hayes@testamericainc.com

Review your project results through

.....LINKS

Total Access

Have a Question?

Visit us at:

www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

9

Table of Contents

			7.1.	-				_	-		7.7	77	_	_							
Cover Page						×					i.										1
Table of Contents														i i		į.		. 4			2
Sample Summary	a.	 ,													4						3
Case Narrative																					
Definitions									1						i					4	5
Client Sample Results																					
QC Sample Results																					
QC Association																					
Chronicle																					24
Method Summary											. 5								 		26
Certification Summary																					27
Chain of Custody																					
Receipt Checklists																					30

Sample Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-81095-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-81095-1	1174 Bobwhite	Solid	06/15/15 10:15	06/20/15 08:40
490-81095-2	671 Camellia	Solid	06/16/15 11:45	06/20/15 08:40
490-81095-3	656 Camellia	Solid	06/17/15 11:15	06/20/15 08:40
490-81095-4	1253 Dove	Solid	06/18/15 11:15	06/20/15 08:40

Case Narrative

Client: Small Business Group Inc.
Project/Site: Laurel Bay Housing Project

TestAmerica Job ID: 490-81095-1

Job ID: 490-81095-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-81095-1

No additional comments.

Receipt

The samples were received on 6/20/2015 8:40 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.6° C.

GC/MS VOA

Method(s) 8260B: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with analytical batch 490-260348.

Method(s) 8260B: The following sample was analyzed outside of analytical holding time due to analyst error: 671 Camellia (490-81095-2). The analyst missed loading this sample onto the instrument with the others in this job. Once this was discovered and the sample loaded for analysis, the 14-day holding time had passed. Per our Technical Director, analysis of this sample one day beyond the 14-day holding time should have little impact regarding dimished VOC levels.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Definitions/Glossary

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-81095-1

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

H Sample was prepped or analyzed beyond the specified holding time

GC/MS Semi VOA

Qualifier Qualifier Description

F2 MS/MSD RPD exceeds control limits

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN: Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration
MDA Minimum detectable activity
EDL Estimated Detection Limit

MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

5

Client Sample Results

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

TestAmerica Job ID: 490-81095-1

Client Sample ID: 1174 Bobwhite

Lab Sample ID: 490-81095-1

Date Collected: 06/15/15 10:15 Date Received: 06/20/15 08:40

Matrix: Solid

General	Chemistry
---------	-----------

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	78		0.10	0.10	%			06/23/15 10:29	1

6

Client Sample Results

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

Client Sample ID: 1174 Bobwhite

Date Collected: 06/15/15 10:15 Date Received: 06/20/15 08:40 Lab Sample ID: 490-81095-1

Matrix: Solid Percent Solids: 77.9

Method: 8260B - Volatile O			IVIS)	MEN	Unit	D	Prepared	Analyzed	Dil Fac
Analyte		Qualifier	0.00210	0.000705		0	06/15/15 10:15	06/29/15 19:09	1
Benzene	ND				1000000	•	06/15/15 10:15	06/29/15 19:09	1
Ethylbenzene	0.000921	J	0.00210	0.000705		0	06/15/15 10:15	06/29/15 19:09	1
Naphthalene	0.00513	1	0.00526	0.00179					1
Toluene	ND		0.00210	0.000778		9	06/15/15 10:15	06/29/15 19:09	
Xylenes, Total	0.00408	J	0.00526	0.00129	mg/Kg	\$	06/15/15 10:15	06/29/15 19:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	87		70 - 130				06/15/15 10:15	06/29/15 19:09	1
4-Bromofluorobenzene (Surr)	109		70 - 130				06/15/15 10:15	06/29/15 19:09	1
Dibromofluoromethane (Surr)	96		70 - 130				06/15/15 10:15	06/29/15 19:09	1
Toluene-d8 (Surr)	99		70 - 130				06/15/15 10:15	06/29/15 19:09	1
Method: 8270D - Semivola	tile Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0669	0.00999	mg/Kg	\$	06/24/15 11:27	06/28/15 12:28	1
Acenaphthylene	ND		0.0669	0.00899	mg/Kg	4	06/24/15 11:27	06/28/15 12:28	1
Anthracene	ND		0.0669	0.00899	mg/Kg	4	06/24/15 11:27	06/28/15 12:28	1
Benzo[a]anthracene	ND		0.0669	0.0150	mg/Kg	4	06/24/15 11:27	06/28/15 12:28	1
Benzo[a]pyrene	ND		0.0669	0.0120	mg/Kg	\$	06/24/15 11:27	06/28/15 12:28	1
Benzo[b]fluoranthene	ND		0.0669	0.0120	mg/Kg	20	06/24/15 11:27	06/28/15 12:28	1
Benzo[g,h,i]perylene	ND		0.0669	0.00899	mg/Kg	4	06/24/15 11:27	06/28/15 12:28	1
Benzo[k]fluoranthene	ND	F2	0.0669	0.0140	mg/Kg	4	06/24/15 11:27	06/28/15 12:28	1
1-Methylnaphthalene	ND		0.0669	0.0140	mg/Kg	4	06/24/15 11:27	06/28/15 12:28	1
Pyrene	ND		0.0669	0.0120	mg/Kg	2,5	06/24/15 11:27	06/28/15 12:28	1
Phenanthrene	ND		0.0669	0.00899	mg/Kg		06/24/15 11:27	06/28/15 12:28	1
Chrysene	ND		0.0669	0.00899	mg/Kg	-0	06/24/15 11:27	06/28/15 12:28	1
Dibenz(a,h)anthracene	ND		0.0669	0.00699	mg/Kg	->	06/24/15 11:27	06/28/15 12:28	1
Fluoranthene	ND		0.0669	0.00899	mg/Kg	Q.	06/24/15 11:27	06/28/15 12:28	1
Fluorene	ND		0.0669	0.0120	mg/Kg	٥	06/24/15 11:27	06/28/15 12:28	1
Indeno[1,2,3-cd]pyrene	ND		0.0669	0.00999	mg/Kg	4	06/24/15 11:27	06/28/15 12:28	1
Naphthalene	ND		0.0669	0.00899	mg/Kg	0	06/24/15 11:27	06/28/15 12:28	1
2-Methylnaphthalene	ND		0.0669	0.0160	mg/Kg	÷	06/24/15 11:27	06/28/15 12:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	90		29 - 120				06/24/15 11:27	06/28/15 12:28	1
Terphenyl-d14 (Surr)	103		13 - 120				06/24/15 11:27	06/28/15 12:28	1
Nitrobenzene-d5 (Surr)	57		27 - 120				06/24/15 11:27	06/28/15 12:28	1
TVILLODGITZGITG-UO (OUT)	0,		20000				#4 PARCE #0.23		

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

TestAmerica Job ID: 490-81095-1

Client Sample ID: 671 Camellia

Lab Sample ID: 490-81095-2

The state of the s

Matrix: Solid

Date Collected: 06/16/15 11:45 Date Received: 06/20/15 08:40

General Chemistry

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	91		0.10	0.10	%			06/23/15 10:29	1

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

Client Sample ID: 671 Camellia

Date Collected: 06/16/15 11:45 Date Received: 06/20/15 08:40 TestAmerica Job ID: 490-81095-1

Lab Sample ID: 490-81095-2

Matrix: Solid Percent Solids: 91.2

Method: 8260B - Volatile C	raspic Compo	unde (GC)	MEN						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	H	0.00214	0.000717		0		07/01/15 09:28	1
Ethylbenzene	ND	Н	0.00214	0.000717		0	06/16/15 11:45	44,14,14,14,44,44	1
Naphthalene	ND	Н	0.00535	0.00182		0	06/16/15 11:45		1
Toluene	ND	Н	0.00214	0.000792		¢	06/16/15 11:45	07/01/15 09:28	1
Xylenes, Total	ND	Н	0.00535	0.00132	mg/Kg	4	06/16/15 11:45	07/01/15 09:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		70-130				06/16/15 11:45	07/01/15 09:28	1
4-Bromofluorobenzene (Surr)	121		70 - 130				06/16/15 11:45	07/01/15 09:28	1
Dibromofluoromethane (Surr)	103		70 - 130				06/16/15 11:45	07/01/15 09:28	1
Toluene-d8 (Surr)	102		70 - 130				06/16/15 11:45	07/01/15 09:28	1
Method: 8270D - Semivola	tile Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0669	0.00999	mg/Kg	4	06/24/15 11:27	06/28/15 13:41	1
Acenaphthylene	ND		0.0669	0.00899	0 0	9%	06/24/15 11:27	06/28/15 13:41	1
Anthracene	ND		0.0669	0.00899	mg/Kg	14	06/24/15 11:27	06/28/15 13:41	1
Benzo[a]anthracene	ND		0.0669	0.0150	mg/Kg	4	06/24/15 11:27	06/28/15 13:41	1
Benzo[a]pyrene	ND		0.0669	0.0120		4	06/24/15 11:27	06/28/15 13:41	1
Benzo[b]fluoranthene	ND		0.0669	0.0120	mg/Kg	\$	06/24/15 11:27	06/28/15 13:41	1
Benzo[g,h,i]perylene	ND		0.0669	0.00899	mg/Kg	4	06/24/15 11:27	06/28/15 13:41	1
Benzo[k]fluoranthene	ND		0.0669	0.0140	mg/Kg	4-	06/24/15 11:27	06/28/15 13:41	1
1-Methylnaphthalene	ND		0.0669	0.0140	mg/Kg	0	06/24/15 11:27	06/28/15 13:41	1
Pyrene	ND		0.0669	0.0120	mg/Kg	4	06/24/15 11:27	06/28/15 13:41	1
Phenanthrene	ND		0.0669	0.00899	mg/Kg	5	06/24/15 11:27	06/28/15 13:41	1
Chrysene	ND		0.0669	0.00899	mg/Kg	· D	06/24/15 11:27	06/28/15 13:41	1
Dibenz(a,h)anthracene	ND		0.0669	0.00699	mg/Kg	J	06/24/15 11:27	06/28/15 13:41	1
Fluoranthene	ND		0.0669	0.00899	mg/Kg	0	06/24/15 11:27	06/28/15 13:41	1
Fluorene	ND		0.0669	0.0120	mg/Kg	0	06/24/15 11:27	06/28/15 13:41	1
Indeno[1,2,3-cd]pyrene	ND		0.0669	0.00999	mg/Kg	1	06/24/15 11:27	06/28/15 13:41	1
Naphthalene	ND		0.0669	0.00899	mg/Kg	4	06/24/15 11:27	06/28/15 13:41	1
2-Methylnaphthalene	ND		0.0669	0.0160	mg/Kg	4	06/24/15 11:27	06/28/15 13:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	67		29 - 120					06/28/15 13:41	1
Terphenyl-d14 (Surr)	81		13 - 120				06/24/15 11:27		1
Nitrobenzene-d5 (Surr)	45		27 - 120				06/24/15 11:27	06/28/15 13:41	1

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-81095-1

Client Sample ID: 656 Camellia

Lab Sample ID: 490-81095-3

Date Collected: 06/17/15 11:15 Date Received: 06/20/15 08:40 Matrix: Solid

General Chemistry

Analyte Result Qualifier RL RL Unit D Prepared Analyzed Dil Fac Percent Solids 96 0.10 0.10 % 06/23/15 10:29 1

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-81095-1

Client Sample ID: 656 Camellia

Date Collected: 06/17/15 11:15 Date Received: 06/20/15 08:40

Nitrobenzene-d5 (Surr)

Lab Sample ID: 490-81095-3 Matrix: Solid

Percent Solids: 96.2

Method: 8260B - Volatile	Organic Compou	unds (GC/	MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ÑD		0.00212	0.000710	mg/Kg	0	06/17/15 11:15	07/01/15 09:57	1
Ethylbenzene	ND		0.00212	0.000710	mg/Kg	~	06/17/15 11:15	07/01/15 09:57	1
Naphthalene	ND		0.00530	0.00180	mg/Kg	4	06/17/15 11:15	07/01/15 09:57	1
Toluene	ND		0.00212	0.000784	mg/Kg	0	06/17/15 11:15	07/01/15 09:57	1
Xylenes, Total	ND		0.00530	0.00130	mg/Kg	0	06/17/15 11:15	07/01/15 09:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		70 - 130				06/17/15 11:15	07/01/15 09:57	1
4-Bromofluorobenzene (Surr)	100		70 - 130				06/17/15 11:15	07/01/15 09:57	1
Dibromofluoromethane (Surr)	103		70 - 130				06/17/15 11:15	07/01/15 09:57	1
Toluene-d8 (Surr)	92		70 - 130				06/17/15 11:15	07/01/15 09:57	1
Method: 8270D - Semivol	atile Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0658	0.00982	mg/Kg	\$	06/24/15 11:27	06/28/15 14:05	1
Acenaphthylene	ND		0.0658	0.00884	mg/Kg	0	06/24/15 11:27	06/28/15 14:05	1
Anthracene	ND		0.0658	0.00884	mg/Kg	- ()	06/24/15 11:27	06/28/15 14:05	1
Benzo[a]anthracene	ND		0.0658	0.0147	mg/Kg	0	06/24/15 11:27	06/28/15 14:05	1
Benzo[a]pyrene	ND		0.0658	0.0118	mg/Kg	0	06/24/15 11:27	06/28/15 14:05	1
Benzo[b]fluoranthene	ND		0.0658	0.0118	mg/Kg	0	06/24/15 11:27	06/28/15 14:05	1
Benzo[g,h,i]perylene	ND		0.0658	0.00884	mg/Kg	3	06/24/15 11:27	06/28/15 14:05	1
Benzo[k]fluoranthene	ND		0.0658	0.0138	mg/Kg	4	06/24/15 11:27	06/28/15 14:05	1
1-Methylnaphthalene	ND		0.0658	0.0138	mg/Kg	-7	06/24/15 11:27	06/28/15 14:05	1
Pyrene	ND		0.0658	0.0118	mg/Kg	->	06/24/15 11:27	06/28/15 14:05	1
Phenanthrene	ND		0.0658	0.00884	mg/Kg	0	06/24/15 11:27	06/28/15 14:05	1
Chrysene	ND		0.0658	0.00884	mg/Kg	4	06/24/15 11:27	06/28/15 14:05	1
Dibenz(a,h)anthracene	ND		0.0658	0.00688	mg/Kg	->	06/24/15 11:27	06/28/15 14:05	1
Fluoranthene	ND		0.0658	0.00884	mg/Kg	\$	06/24/15 11:27	06/28/15 14:05	1
Fluorene	ND		0.0658	0.0118	mg/Kg	\$	06/24/15 11:27	06/28/15 14:05	1
Indeno[1,2,3-cd]pyrene	ND		0.0658	0.00982	mg/Kg	44	06/24/15 11:27	06/28/15 14:05	1
Naphthalene	ND		0.0658	0.00884	mg/Kg	\$	06/24/15 11:27	06/28/15 14:05	1
2-Methylnaphthalene	ND		0.0658	0.0157	mg/Kg	¢	06/24/15 11:27	06/28/15 14:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	59		29 - 120				06/24/15 11:27	06/28/15 14:05	1
Terphenyl-d14 (Surr)	69		13 - 120				06/24/15 11:27	06/28/15 14:05	1

06/24/15 11:27 06/28/15 14:05

27 - 120

39

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

TestAmerica Job ID: 490-81095-1

Client Sample ID: 1253 Dove Date Collected: 06/18/15 11:15 Date Received: 06/20/15 08:40

Lab Sample ID: 490-81095-4

Matrix: Solid

General Chemistry

Analyte	Result Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	94	0.10	0.10	%			06/23/15 10:29	1

Client Sample ID: 1253 Dove Date Collected: 06/18/15 11:15 Date Received: 06/20/15 08:40

Lab Sample ID: 490-81095-4

TestAmerica Job ID: 490-81095-1

Matrix: Solid

Percent Solids: 94.0

Method: 8260B - Volatile O				4454	11. 11				A
Analyte		Qualifier,	RL		Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00210	0.000702	mg/Kg	Q	06/18/15 11:15	4414 1000 1000	1
Ethylbenzene	ND		0.00210	0.000702	0 0	0	06/18/15 11:15		1
Naphthalene	ND		0.00524	0.00178		2	06/18/15 11:15		1
Toluene	ND		0.00210	0.000775		\$	06/18/15 11:15	TO VENDERON MENTAL	1
Xylenes, Total	ND		0.00524	0.00129	mg/Kg	÷	06/18/15 11:15	07/01/15 13:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		70 - 130				06/18/15 11:15	07/01/15 13:05	1
4-Bromofluorobenzene (Surr)	90		70 - 130				06/18/15 11:15	07/01/15 13:05	1
Dibromofluoromethane (Surr)	105		70 - 130				06/18/15 11:15	07/01/15 13:05	1
Toluene-d8 (Surr)	94		70 - 130				06/18/15 11:15	07/01/15 13:05	1
Method: 8270D - Semivola	tile Organic Co	mpounds	(GC/MS)						
Analyte		Qualifier	RL.	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0669	0.00998	mg/Kg	-2	06/24/15 11:27	06/28/15 14:30	1
Acenaphthylene	ND		0.0669	0.00898	mg/Kg	<	06/24/15 11:27	06/28/15 14:30	1
Anthracene	ND		0.0669	0.00898	mg/Kg	4	06/24/15 11:27	06/28/15 14:30	1
Benzo[a]anthracene	ND		0.0669	0.0150	mg/Kg	×	06/24/15 11:27	06/28/15 14:30	1
Benzo[a]pyrene	ND		0.0669	0.0120	mg/Kg	4	06/24/15 11:27	06/28/15 14:30	1
Benzo[b]fluoranthene	ND		0.0669	0.0120	mg/Kg	0	06/24/15 11:27	06/28/15 14:30	1
Benzo[g,h,i]perylene	ND		0.0669	0.00898	mg/Kg	4	06/24/15 11:27	06/28/15 14:30	1
Benzo[k]fluoranthene	ND		0.0669	0.0140	mg/Kg	5	06/24/15 11:27	06/28/15 14:30	1
1-Methylnaphthalene	ND		0.0669	0.0140	mg/Kg	4	06/24/15 11:27	06/28/15 14:30	1
Pyrene	ND		0.0669	0.0120	mg/Kg	4	06/24/15 11:27	06/28/15 14:30	1
Phenanthrene	ND		0.0669	0.00898	mg/Kg	4	06/24/15 11:27	06/28/15 14:30	1
Chrysene	ND		0.0669	0.00898	mg/Kg	20	06/24/15 11:27	06/28/15 14:30	1
Dibenz(a,h)anthracene	ND		0.0669	0.00699	mg/Kg	4	06/24/15 11:27	06/28/15 14:30	1
Fluoranthene	ND		0.0669	0.00898	mg/Kg	0	06/24/15 11:27	06/28/15 14:30	1
Fluorene	ND		0.0669	0.0120	mg/Kg	4	06/24/15 11:27	06/28/15 14:30	1
Indeno[1,2,3-cd]pyrene	ND		0.0669	0.00998	mg/Kg	0	06/24/15 11:27	06/28/15 14:30	1
Naphthalene	ND		0.0669	0.00898	mg/Kg	-0	06/24/15 11:27	06/28/15 14:30	1
2-Methylnaphthalene	ND		0.0669	0.0160	mg/Kg	÷	06/24/15 11:27	06/28/15 14:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	51		29 - 120				06/24/15 11:27	06/28/15 14:30	1
Terphenyl-d14 (Surr)	56		13 - 120				06/24/15 11:27	06/28/15 14:30	1
Nitrobenzene-d5 (Surr)	31		27 - 120				06/24/15 11:27	06/28/15 14:30	1

TestAmerica Job ID: 490-81095-1

Project/Site: Laurel Bay Housing Project

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 490-260348/10

Matrix: Solid

Analysis Batch: 260348

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00200	0.000670	mg/Kg			06/29/15 12:40	1
Ethylbenzene	ND		0.00200	0.000670	mg/Kg			06/29/15 12:40	1
Naphthalene	ND		0.00500	0.00170	mg/Kg			06/29/15 12:40	1
Toluene	ND		0.00200	0.000740	mg/Kg			06/29/15 12:40	1
Xylenes, Total	ND		0.00500	0.00123	mg/Kg			06/29/15 12:40	1
	531	-0.01							

MB MB Limits Dil Fac Surrogate %Recovery Qualifier Prepared Analyzed 1,2-Dichloroethane-d4 (Surr) 83 70 - 130 06/29/15 12:40 4-Bromofluorobenzene (Surr) 100 70 - 130 06/29/15 12:40 1 Dibromofluoromethane (Surr) 95 70 - 130 06/29/15 12:40 1 Toluene-d8 (Surr) 101 70 - 130 06/29/15 12:40 1

Lab Sample ID: LCS 490-260348/4

Matrix: Solid

Analyte

Benzene

Toluene

Analysis Batch: 260348

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits 0.0500 0.05897 mg/Kg 118 75 - 127 Ethylbenzene 0.0500 0.06220 mg/Kg 124 80 - 134 Naphthalene 0.0500 0.06571 mg/Kg 131 69 - 150 0.0500 0.05901 mg/Kg 118 80 - 132 Xylenes, Total 0.100 0.1232 mg/Kg 123 80 - 137

LCS LCS Surrogate %Recovery Qualifier Limits 70 - 130 1,2-Dichloroethane-d4 (Surr) 88 70 - 130 4-Bromofluorobenzene (Surr) 100 70 - 130 Dibromofluoromethane (Surr) 99 Toluene-d8 (Surr) 100 70 - 130

Lab Sample ID: LCSD 490-260348/5

Matrix: Solid

Analysis Batch: 260348

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

%Rec. RPD it 0

Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.0500	0.05813	mg/Kg		116	75 - 127	1	50
Ethylbenzene	0.0500	0.06011	mg/Kg		120	80 - 134	3	50
Naphthalene	0.0500	0.06214	mg/Kg		124	69 - 150	6	50
Toluene	0.0500	0.05774	mg/Kg		115	80 - 132	2	50
Xylenes, Total	0.100	0.1188	mg/Kg		119	80 - 137	4	50

Spike

LCSD LCSD

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	89		70 - 130
4-Bromofluorobenzene (Surr)	99		70 - 130
Dibromofluoromethane (Surr)	100		70 - 130
Toluene-d8 (Surr)	100		70 - 130

Prep Batch: 260813

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 400-107549-B-19-D MS	Client Sample ID: Matrix Spike
Matrix: Solid	Prep Type: Total/NA

Analysis Batch: 261008

Analysis Batem 20.000	Sample S	Sample	Spike	MS	MS				%Rec.
Analyte	Result C	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	ND		0.0504	0.03564		mg/Kg	4	71	31 - 143
Ethylbenzene	ND		0.0504	0.02927		mg/Kg	0	58	23 - 161
Naphthalene	ND		0.0504	0.04370		mg/Kg	0	87	10 - 176
Toluene	ND		0.0504	0.03315		mg/Kg	4	66	30 - 155
Xylenes, Total	ND		0.101	0.05559		mg/Kg	0	55	25 - 162

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	75		70 - 130
4-Bromofluorobenzene (Surr)	98		70 - 130
Dibromofluoromethane (Surr)	92		70 - 130
Toluene-d8 (Surr)	97		70 - 130

Lab Sample ID: 400-107549-B-19-E MSD

Matrix: Solid

Analysis Batch: 261008

and a support of the	Prep Type: Total/NA
	Prep Batch: 260813

Client Sample ID: Matrix Spike Duplicate

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		0.0462	0.04382		mg/Kg	27	95	31 - 143	21	50
Ethylbenzene	ND		0.0462	0.04313		mg/Kg	÷	93	23 - 161	38	50
Naphthalene	ND		0.0462	0.04436		mg/Kg	\$	96	10 - 176	2	50
Toluene	ND		0.0462	0.04340		mg/Kg	· O	94	30 - 155	27	50
Xylenes, Total	ND		0.0925	0.08390		mg/Kg	O	91	25 - 162	41	50

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	80		70 - 130
4-Bromofluorobenzene (Surr)	90		70 - 130
Dibromofluoromethane (Surr)	98		70 - 130
Toluene-d8 (Surr)	92		70 - 130

Lab Sample ID: 400-107549-B-20-D MS

Matrix: Solid

Analysis Batch: 260956

Client Sample	ID: Matrix Spike
Dran	Type: Total/NA

Prep Batch: 260813

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	ND		0.0532	0.06740		mg/Kg	\Diamond	127	31 - 143
Ethylbenzene	ND		0.0532	0.06099		mg/Kg	0	115	23 - 161
Naphthalene	ND		0.0532	0.05333		mg/Kg	4	100	10 - 176
Toluene	ND		0.0532	0.05934		mg/Kg	S.	112	30 - 155
Xylenes, Total	ND		0.106	0.1199		mg/Kg	-\$	113	25 - 162

MS	MS

Limits
70 - 130
70 - 130
70 - 130
70 - 130

Client Sample ID: Matrix Spike Duplicate

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 400-107549-B-20-E

Matrix: Solid

Analysis Batch: 260956

							Prep Ty			
							Prep Ba	atch: 26	30813	
ple	Spike	MSD	MSD				%Rec.		RPD	
liftor	Added	Denville	O	flat.	-	0/ 0	1 1	-	6 4	

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		0.0526	0.06606		mg/Kg	\$	126	31 - 143	2	50
Ethylbenzene	ND		0.0526	0.05679		mg/Kg	0	108	23 - 161	7	50
Naphthalene	ND		0.0526	0.05036		mg/Kg	\$	96	10 - 176	6	50
Toluene	ND		0.0526	0.05585		mg/Kg	0	106	30 - 155	6	50
Xylenes, Total	ND		0.105	0.1111		mg/Kg	٥	106	25 - 162	8	50

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	88		70 - 130
4-Bromofluorobenzene (Surr)	99		70 - 130
Dibromofluoromethane (Surr)	104		70 - 130
Toluene-d8 (Surr)	95		70 - 130

Lab Sample ID: MB 490-260956/7

Matrix: Solid

Analysis Batch: 260956

Client Sample ID: Method Blank

Prep Type: Total/NA

	MR M	NB							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00200	0.000670	mg/Kg			07/01/15 00:27	1
Ethylbenzene	ND		0.00200	0.000670	mg/Kg			07/01/15 00:27	1
Naphthalene	ND		0.00500	0.00170	mg/Kg			07/01/15 00:27	1
Toluene	ND		0.00200	0.000740	mg/Kg			07/01/15 00:27	1
Xylenes, Total	ND		0.00500	0.00123	mg/Kg			07/01/15 00:27	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	84	70 - 130	07/01/15 00:27	1
4-Bromofluorobenzene (Surr)	99	70 - 130	07/01/15 00:27	1
Dibromofluoromethane (Surr)	99	70 - 130	07/01/15 00:27	1
Toluene-d8 (Surr)	97	70 - 130	07/01/15 00:27	1

Lab Sample ID: LCS 490-260956/4

Matrix: Solid

Analysis Batch: 260956

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Benzene 0.0500 0.06073 mg/Kg 121 75-127 Ethylbenzene 0.0500 0.05690 mg/Kg 114 80 - 134 Naphthalene 0.0500 0.05667 mg/Kg 69 - 150 113 Toluene 0.0500 0.05345 mg/Kg 107 80 - 132 Xylenes, Total 0.100 0.1124 mg/Kg 80 - 137 112

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	89		70 - 130
4-Bromofluorobenzene (Surr)	97		70 - 130
Dibromofluoromethane (Surr)	102		70 - 130
Toluene-d8 (Surr)	93		70 - 130

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 490-260956/5

Matrix: Solid

Analysis Batch: 260956

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

Spike	LCSD LCSD				%Rec.		RPD
Added	Result Qualifier	Unit	D	%Rec	Limits	RPD	Limit
0.0500	0.06191	mg/Kg		124	75 - 127	2	50
0.0500	0.05843	mg/Kg		117	80 - 134	3	50
0.0500	0.05729	mg/Kg		115	69 - 150	1	50
0.0500	0.05575	mg/Kg		112	80 - 132	4	50
0.100	0.1147	mg/Kg		115	80 - 137	2	50
	Added 0.0500 0.0500 0.0500 0.0500	Added Result Qualifier 0.0500 0.06191 0.0500 0.05843 0.0500 0.05729 0.0500 0.05575	Added Result Qualifier Unit 0.0500 0.06191 mg/Kg 0.0500 0.05843 mg/Kg 0.0500 0.05729 mg/Kg 0.0500 0.05575 mg/Kg	Added Result Qualifier Unit D 0.0500 0.06191 mg/Kg 0.0500 0.05843 mg/Kg 0.0500 0.05729 mg/Kg 0.0500 0.05575 mg/Kg	Added Result Qualifier Unit mg/Kg D %Rec 0.0500 0.06191 mg/Kg 124 0.0500 0.05843 mg/Kg 117 0.0500 0.05729 mg/Kg 115 0.0500 0.05575 mg/Kg 112	Added Result Qualifier Unit Unit D %Rec Limits 0.0500 0.06191 mg/Kg 124 75 - 127 0.0500 0.05843 mg/Kg 117 80 - 134 0.0500 0.05729 mg/Kg 115 69 - 150 0.0500 0.05575 mg/Kg 112 80 - 132	Added Result Qualifier Unit D %Rec Limits RPD 0.0500 0.06191 mg/Kg 124 75 - 127 2 0.0500 0.05843 mg/Kg 117 80 - 134 3 0.0500 0.05729 mg/Kg 115 69 - 150 1 0.0500 0.05575 mg/Kg 112 80 - 132 4

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	89		70 - 130
4-Bromofluorobenzene (Surr)	97		70 - 130
Dibromofluoromethane (Surr)	103		70 - 130
Toluene-d8 (Surr)	93		70 - 130

Lab Sample ID: MB 490-261008/6

Matrix: Solid

Analysis Batch: 261008

Client Sample ID: Method Blank

Prep Type: Total/NA

	IVIB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00200	0.000670	mg/Kg			07/01/15 11:06	1
Ethylbenzene	ND		0.00200	0.000670	mg/Kg			07/01/15 11:06	1
Naphthalene	ND		0.00500	0.00170	mg/Kg			07/01/15 11:06	1
Toluene	ND		0.00200	0.000740	mg/Kg			07/01/15 11:06	1
Xylenes, Total	ND		0.00500	0.00123	mg/Kg			07/01/15 11:06	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	85	70 - 130	07/01/15 11:06	1
4-Bromofluorobenzene (Surr)	89	70 - 130	07/01/15 11:06	1
Dibromofluoromethane (Surr)	101	70 - 130	07/01/15 11:06	1
Toluene-d8 (Surr)	97	70 - 130	07/01/15 11:06	1

Lab Sample ID: LCS 490-261008/3

Matrix: Solid

Analysis Batch: 261008

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec

The state of the s	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.0500	0.05655		mg/Kg		113	75 - 127
Ethylbenzene	0.0500	0.06061		mg/Kg		121	80 - 134
Naphthalene	0.0500	0.06100		mg/Kg		122	69 - 150
Toluene	0.0500	0.05981		mg/Kg		120	80 - 132
Xylenes, Total	0.100	0.1174		mg/Kg		117	80 - 137

LCS LCS

%Recovery	Qualifier	Limits
95		70 - 130
86		70 - 130
102		70 - 130
96		70 - 130
	95 86 102	86 102

QC Sample Results

0.100

0.1203

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-81095-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 490-261008/4

Matrix: Solid

Analysis Batch: 261008

Analyte

Benzene

Toluene

Ethylbenzene

Naphthalene

Xylenes, Total

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

120

Spike LCSD LCSD RPD Added Result Qualifier Unit %Rec Limits RPD Limit 0.0500 0.05643 mg/Kg 113 75-127 0 50 0.0500 0.06082 mg/Kg 122 80 - 134 0 50 0.0500 0.06317 mg/Kg 126 69-150 3 50 0.0500 0.06102 mg/Kg 122 80 - 132 2 50

mg/Kg

LCSD LCSD

%Recovery	Qualifier	Limits
93		70 - 130
88		70 - 130
102		70 - 130
99		70 - 130
	93 88 102	88 102

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 490-258983/1-A

Matrix: Solid

Analysis Batch: 260232

Client Sample ID: Method Blank

80 - 137

Prep Type: Total/NA Prep Batch: 258983

2

50

Analysis Batch: 200232	1.00	210						Prep Batch:	258983
	MB	MB							
Analyte		Qualifier	RL	1110	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0670	0.0100	mg/Kg		06/24/15 11:27	06/28/15 11:17	1
Acenaphthylene	ND		0.0670	0.00900	mg/Kg		06/24/15 11:27	06/28/15 11:17	1
Anthracene	ND		0.0670	0.00900	mg/Kg		06/24/15 11:27	06/28/15 11:17	1
Benzo[a]anthracene	ND		0.0670	0.0150	mg/Kg		06/24/15 11:27	06/28/15 11:17	1
Benzo[a]pyrene	ND		0.0670	0.0120	mg/Kg		06/24/15 11:27	06/28/15 11:17	1
Benzo[b]fluoranthene	ND		0.0670	0.0120	mg/Kg		06/24/15 11:27	06/28/15 11:17	1
Benzo[g,h,i]perylene	ND		0.0670	0.00900	mg/Kg		06/24/15 11:27	06/28/15 11:17	1
Benzo[k]fluoranthene	ND		0.0670	0.0140	mg/Kg		06/24/15 11:27	06/28/15 11:17	1
1-Methylnaphthalene	ND		0.0670	0.0140	mg/Kg		06/24/15 11:27	06/28/15 11:17	1
Pyrene	ND		0.0670	0.0120	mg/Kg		06/24/15 11:27	06/28/15 11:17	1
Phenanthrene	ND		0.0670	0.00900	mg/Kg		06/24/15 11:27	06/28/15 11:17	1
Chrysene	ND		0.0670	0.00900	mg/Kg		06/24/15 11:27	06/28/15 11:17	1
Dibenz(a,h)anthracene	ND		0.0670	0.00700	mg/Kg		06/24/15 11:27	06/28/15 11:17	1
Fluoranthene	ND		0.0670	0.00900	mg/Kg		06/24/15 11:27	06/28/15 11:17	1
Fluorene	ND		0.0670	0.0120	mg/Kg		06/24/15 11:27	06/28/15 11:17	1
Indeno[1,2,3-cd]pyrene	ND		0.0670	0.0100	mg/Kg		06/24/15 11:27	06/28/15 11:17	1
Naphthalene	ND		0.0670	0.00900	mg/Kg		06/24/15 11:27	06/28/15 11:17	1
2-Methylnaphthalene	ND		0.0670	0.0160	mg/Kg		06/24/15 11:27	06/28/15 11:17	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	90		29 - 120				06/24/15 11:27	06/28/15 11:17	1
Terphenyl-d14 (Surr)	110		13 - 120				06/24/15 11:27	06/28/15 11:17	1
Nitrobenzene-d5 (Surr)	56		27 - 120				06/24/15 11:27	06/28/15 11:17	1

Project/Site: Laurel Bay Housing Project

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 490-258983/2-A Matrix: Solid

Analysis Batch: 260232

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 258983

Spike	LCS	LUS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
1.67	1.217		mg/Kg		73	38 - 120	
1.67	1.353		mg/Kg		81	46 - 124	
1.67	1.355		mg/Kg		81	45 - 120	
1.67	1.282		mg/Kg		77	45 - 120	
1.67	1.253		mg/Kg		75	42 - 120	
1.67	1.456		mg/Kg		87	38 - 120	
1.67	1.339		mg/Kg		80	42 - 120	
1.67	1.281		mg/Kg		77	32 - 120	
1.67	1.193		mg/Kg		72	43 - 120	
1.67	1.275		mg/Kg		76	45 - 120	
1.67	1.297		mg/Kg		78	43 - 120	
1.67	1.513		mg/Kg		91	32 - 128	
1.67	1.314		mg/Kg		79	46 - 120	
1.67	1.309		mg/Kg		79	42 - 120	
1.67	1.452		mg/Kg		87	41 - 121	
1.67	1.172		mg/Kg		70	32 - 120	
1.67	1.158		mg/Kg		69	28 - 120	
	Added 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67	Added Result 1.67 1.217 1.67 1.353 1.67 1.355 1.67 1.282 1.67 1.253 1.67 1.456 1.67 1.339 1.67 1.281 1.67 1.297 1.67 1.297 1.67 1.513 1.67 1.314 1.67 1.309 1.67 1.452 1.67 1.452 1.67 1.472	Added Result Qualifier 1.67 1.217 1.67 1.353 1.67 1.355 1.67 1.282 1.67 1.253 1.67 1.456 1.67 1.339 1.67 1.281 1.67 1.193 1.67 1.275 1.67 1.297 1.67 1.513 1.67 1.314 1.67 1.309 1.67 1.452 1.67 1.452 1.67 1.172	Added Result Qualifier Unit 1.67 1.217 mg/Kg 1.67 1.353 mg/Kg 1.67 1.355 mg/Kg 1.67 1.282 mg/Kg 1.67 1.253 mg/Kg 1.67 1.456 mg/Kg 1.67 1.339 mg/Kg 1.67 1.281 mg/Kg 1.67 1.193 mg/Kg 1.67 1.275 mg/Kg 1.67 1.513 mg/Kg 1.67 1.314 mg/Kg 1.67 1.309 mg/Kg 1.67 1.452 mg/Kg 1.67 1.452 mg/Kg	Added Result Qualifier Unit Unit Unit Unit Unit Unit Unit Unit	Added Result Qualifier Unit D %Rec 1.67 1.217 mg/Kg 73 1.67 1.353 mg/Kg 81 1.67 1.355 mg/Kg 77 1.67 1.282 mg/Kg 75 1.67 1.456 mg/Kg 87 1.67 1.339 mg/Kg 80 1.67 1.281 mg/Kg 77 1.67 1.193 mg/Kg 72 1.67 1.275 mg/Kg 76 1.67 1.297 mg/Kg 78 1.67 1.513 mg/Kg 79 1.67 1.309 mg/Kg 79 1.67 1.452 mg/Kg 79 1.67 1.452 mg/Kg 70	Added Result Qualifier Unit D %Rec Limits 1.67 1.217 mg/Kg 73 38-120 1.67 1.353 mg/Kg 81 46-124 1.67 1.355 mg/Kg 81 45-120 1.67 1.282 mg/Kg 77 45-120 1.67 1.253 mg/Kg 75 42-120 1.67 1.456 mg/Kg 87 38-120 1.67 1.339 mg/Kg 80 42-120 1.67 1.281 mg/Kg 77 32-120 1.67 1.193 mg/Kg 72 43-120 1.67 1.297 mg/Kg 76 45-120 1.67 1.297 mg/Kg 78 43-120 1.67 1.513 mg/Kg 79 46-120 1.67 1.314 mg/Kg 79 46-120 1.67 1.309 mg/Kg 79 42-120 1.67 1.45

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	71		29 - 120
Terphenyl-d14 (Surr)	83		13 - 120
Nitrobenzene-d5 (Surr)	49		27 - 120

Lab Sample ID: LCSD 490-258983/3-A

Matrix: Solid

Analysis Batch: 260232

Client Sample	ID: Lab	Control	Sample	Dup
---------------	---------	---------	--------	-----

Prep Type: Total/NA

Prep Batch: 258983

Analysis Batem 20020	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthylene	1.67	1.426		mg/Kg		86	38 - 120	16	50
Anthracene	1.67	1.488		mg/Kg		89	46 - 124	10	49
Benzo[a]anthracene	1.67	1.579		mg/Kg		95	45 - 120	15	50
Benzo[a]pyrene	1.67	1,465		mg/Kg		88	45 - 120	13	50
Benzo[b]fluoranthene	1.67	1.368		mg/Kg		82	42 - 120	9	50
Benzo[g,h,i]perylene	1.67	1.586		mg/Kg		95	38 - 120	9	50
Benzo[k]fluoranthene	1.67	1.515		mg/Kg		91	42 - 120	12	45
1-Methylnaphthalene	1.67	1.477		mg/Kg		89	32 - 120	14	50
Pyrene	1.67	1.404		mg/Kg		84	43 - 120	16	50
Phenanthrene	1.67	1.385		mg/Kg		83	45 - 120	8	50
Chrysene	1.67	1.520		mg/Kg		91	43 - 120	16	49
Dibenz(a,h)anthracene	1.67	1.717		mg/Kg		103	32 - 128	13	50
Fluoranthene	1.67	1.432		mg/Kg		86	46 - 120	9	50
Fluorene	1.67	1.501		mg/Kg		90	42-120	14	50
Indeno[1,2,3-cd]pyrene	1.67	1.574		mg/Kg		94	41 - 121	8	50
Naphthalene	1.67	1.410		mg/Kg		85	32 - 120	18	50
2-Methylnaphthalene	1.67	1.339		mg/Kg		80	28 - 120	14	50

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 490-258983/3-A

Matrix: Solid

Analysis Batch: 260232

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 258983

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	82		29 - 120
Terphenyl-d14 (Surr)	97		13 - 120
Nitrohenzene-d5 (Surr)	58		27 120

Lab Sample ID: 490-81095-1 MS

Matrix: Solid

Analysis Batch: 260232

Client Sample ID: 1174 Bobwhite

Prep Type: Total/NA

Prep Batch: 258983

ensen annen essesse	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthylene	ND		2.10	1.605		mg/Kg	7	76	25 - 120
Anthracene	ND		2.10	1.813		mg/Kg	4	86	28 - 125
Benzo[a]anthracene	ND		2.10	1.891		mg/Kg	7	90	23 - 120
Benzo[a]pyrene	ND		2.10	1.828		mg/Kg	4	87	15 - 128
Benzo[b]fluoranthene	ND		2.10	1,669		mg/Kg	*	79	12 - 133
Benzo[g,h,i]perylene	ND		2.10	2.011		mg/Kg	-	96	22 - 120
Benzo[k]fluoranthene	ND	F2	2.10	1.910		mg/Kg	4	91	28 - 120
1-Methylnaphthalene	ND		2.10	1.639		mg/Kg	÷	78	10 - 120
Pyrene	ND		2.10	1.653		mg/Kg	0	79	20 - 123
Phenanthrene	ND		2.10	1.725		mg/Kg	0	82	21 - 122
Chrysene	ND		2.10	1.754		mg/Kg	4	83	20 - 120
Dibenz(a,h)anthracene	ND		2.10	2.111		mg/Kg	1	100	12 - 128
Fluoranthene	ND		2.10	1.764		mg/Kg	r	84	10 - 143
Fluorene	ND		2.10	1.760		mg/Kg	0	84	20 - 120
Indeno[1,2,3-cd]pyrene	ND		2.10	1.953		mg/Kg	15	93	22 - 121
Naphthalene	ND		2.10	1.453		mg/Kg	0	69	10 - 120
2-Methylnaphthalene	ND		2.10	1.453		mg/Kg	4	69	13 - 120

MS	MS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	74		29 - 120
Terphenyl-d14 (Surr)	89		13 - 120
Nitrobenzene-d5 (Surr)	51		27 - 120

Lab Sample ID: 490-81095-1 MSD

Matrix: Solid

Chefft Sain	אופ וש.	11/4	DODMIIIG
	P	-	

Prep Type: Total/NA

Analysis Batch: 260232									Prep Ba	atch: 2	58983
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthylene	ND		2.12	1.090		mg/Kg		51	25 - 120	38	50
Anthracene	ND		2.12	1.182		mg/Kg	-	56	28 - 125	42	49
Benzo[a]anthracene	ND		2.12	1.248		mg/Kg	-\$	59	23 - 120	41	50
Benzo[a]pyrene	ND		2.12	1.146		mg/Kg		54	15 - 128	46	50
Benzo[b]fluoranthene	ND		2.12	1.097		mg/Kg	0	52	12 - 133	41	50
Benzo[g,h,i]perylene	ND		2.12	1.248		mg/Kg	4	59	22 - 120	47	50
Benzo[k]fluoranthene	ND	F2	2.12	1.176	F2	mg/Kg	2.	55	28 - 120	48	45
1-Methylnaphthalene	ND		2.12	1.124		mg/Kg	3,5	53	10 - 120	37	50
Pyrene	ND		2.12	1.070		mg/Kg	0	50	20 - 123	43	50
Phenanthrene	ND		2.12	1.095		mg/Kg	0	52	21 - 122	45	50
Chrysene	ND		2.12	1.153		mg/Kg	0	54	20 - 120	41	49

QC Sample Results

Client: Small Business Group Inc.

Project/Site: Laurel Bay Housing Project

TestAmerica Job ID: 490-81095-1

Prep Type: Total/NA

Client Sample ID: Duplicate Prep Type: Total/NA

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 490-81095-1 MSD Client Sample ID: 1174 Bobwhite

Matrix: Solid

Analysis Batch: 260232									Prep Ba	atch: 2	58983
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dibenz(a,h)anthracene	ND		2.12	1.308		mg/Kg	0	62	12-128	47	50
Fluoranthene	ND		2.12	1.168		mg/Kg	\$	55	10-143	41	50
Fluorene	ND		2.12	1.162		mg/Kg	0	55	20 - 120	41	50
Indeno[1,2,3-cd]pyrene	ND		2.12	1.219		mg/Kg	0	57	22 - 121	46	50
Naphthalene	ND		. 2.12	1.047		mg/Kg	0	49	10 - 120	32	50
2-Methylnaphthalene	ND		2.12	1.018		mg/Kg	9	48	13 - 120	35	50

MSD MSD

	11100		
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	49		29 - 120
Terphenyl-d14 (Surr)	56		13 - 120
Nitrobenzene-d5 (Surr)	34		27 - 120

Method: Moisture - Percent Moisture

Lab Sample ID: 490-81078-L-1 DU

Matrix: Solid

Analysis Batch: 258547

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Percent Solids	84		84		%		0.2	20

QC Association Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

TestAmerica Job ID: 490-81095-1

Prep Batch 258682

GC/MS VOA

Prep Batch:	258682
-------------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-81095-1	1174 Bobwhite	Total/NA	Solid	5035	20.30.200
490-81095-2	671 Camellia	Total/NA	Solid	5035	
490-81095-3	656 Camellia	Total/NA	Solid	5035	
490-81095-4	1253 Dove	Total/NA	Solid	5035	

Analysis Batch: 260348

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	
490-81095-1	1174 Bobwhite	Total/NA	Solid	8260B	
LCS 490-260348/4	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 490-260348/5	Lab Control Sample Dup	Total/NA	Solid	8260B	
MB 490-260348/10	Method Blank	Total/NA	Solid	8260B	

Prep Batch: 260813

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-107549-B-19-D MS	Matrix Spike	Total/NA	Solid	5030B	
400-107549-B-19-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5030B	
400-107549-B-20-D MS	Matrix Spike	Total/NA	Solid	5030B	
400-107549-B-20-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5030B	

Analysis Batch: 260956

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-107549-B-20-D MS	Matrix Spike	Total/NA	Solid	8260B	260813
400-107549-B-20-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8260B	260813
490-81095-2	671 Camellia	Total/NA	Solid	8260B	258682
490-81095-3	656 Camellia	Total/NA	Solid	8260B	258682
LCS 490-260956/4	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 490-260956/5	Lab Control Sample Dup	Total/NA	Solid	8260B	
MB 490-260956/7	Method Blank	Total/NA	Solid	8260B	

Analysis Batch: 261008

nod Prep Batch
DB 260813
DB 260813
DB 258682
)B
)B
OB .
60 60 60 60

GC/MS Semi VOA

Prep Batch: 258983

Lab Sample ID 490-81095-1	Client Sample ID 1174 Bobwhite	Prep Type Total/NA	Matrix Solid	Method 3550C	Prep Batch
490-81095-1 MS	1174 Bobwhite	Total/NA	Solid	3550C	
490-81095-1 MSD	1174 Bobwhite	Total/NA	Solid	3550C	
490-81095-2	671 Camellia	Total/NA	Solid	3550C	
490-81095-3	656 Camellia	Total/NA	Solid	3550C	
490-81095-4	1253 Dove	Total/NA	Solid	3550C	
LCS 490-258983/2-A	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 490-258983/3-A	Lab Control Sample Dup	Total/NA	Solid	3550C	

Method

8270D

Client: Small Business Group Inc.

Project/Site: Laurel Bay Housing Project

GC/MS Semi VOA (Continued)

Client Sample ID

Method Blank

Prep Batch: 258983 (Continued)

Lab Sample ID

MB 490-258983/1-A	Method Blank	Total/NA	Solid	3550C		
Analysis Batch: 2602	232					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
490-81095-1	1174 Bobwhite	Total/NA	Solid	8270D	258983	
490-81095-1 MS	1174 Bobwhite	Total/NA	Solid	8270D	258983	
490-81095-1 MSD	1174 Bobwhite	Total/NA	Solid	8270D	258983	
490-81095-2	671 Camellia	Total/NA	Solid	8270D	258983	
490-81095-3	656 Camellia	Total/NA	Solid	8270D	258983	
490-81095-4	1253 Dove	Total/NA	Solid	8270D	258983	
LCS 490-258983/2-A	Lab Control Sample	Total/NA	Solid	8270D	258983	
LCSD 490-258983/3-A	Lab Control Sample Dup	Total/NA	Solid	8270D	258983	

Prep Type

Total/NA

Matrix

Solid

General Chemistry

MB 490-258983/1-A

Analysis Batch: 258547

1 1 0 1-10	Client Comple ID	Deen Trees	Matrix	Method	Door Datelo
Lab Sample ID	Client Sample ID	Prep Type		***************************************	Prep Batch
490-81078-L-1 DU	Duplicate	Total/NA	Solid	Moisture	
490-81095-1	1174 Bobwhite	Total/NA	Solid	Moisture	
490-81095-2	671 Camellia	Total/NA	Solid	Moisture	
490-81095-3	656 Camellia	Total/NA	Solid	Moisture	
490-81095-4	1253 Dove	Total/NA	Solid	Moisture	

Prep Batch

258983

Lab Chronicle

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-81095-1

Client Sample ID: 1174 Bobwhite

Date Collected: 06/15/15 10:15 Date Received: 06/20/15 08:40

Lab Sample ID: 490-81095-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			258547	06/23/15 10:29	MAA	TAL NSH

Client Sample ID: 1174 Bobwhite Lab Sample ID: 490-81095-1

Date Collected: 06/15/15 10:15 Date Received: 06/20/15 08:40

Matrix: Solid Percent Solids: 77.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.105 g	5.0 mL	258682	06/15/15 10:15	JLP	TAL NSH
Total/NA	Analysis	8260B		1	6.105 g	5.0 mL	260348	06/29/15 19:09	JPV	TAL NSH
Total/NA	Prep	3550C			38.56 g	1 mL	258983	06/24/15 11:27	LDC	TAL NSH
Total/NA	Analysis	8270D		1	38.56 g	1 mL	260232	06/28/15 12:28	SNR	TAL NSH

Client Sample ID: 671 Camellia Lab Sample ID: 490-81095-2

Date Collected: 06/16/15 11:45 Date Received: 06/20/15 08:40

Dil Initial Final Batch Batch Batch Prepared Type Method Number or Analyzed Prep Type Run Factor Amount Amount Analyst Lab Total/NA Analysis Moisture 1 258547 06/23/15 10:29 MAA TAL NSH

Client Sample ID: 671 Camellia

Date Collected: 06/16/15 11:45 Date Received: 06/20/15 08:40

Lab Sample ID: 490-81095-2 Matrix: Solid

Percent Solids: 91,2

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.119 g	5.0 mL	258682	06/16/15 11:45	JLP	TAL NSH
Total/NA	Analysis	8260B		1	5.119 g	5.0 mL	260956	07/01/15 09:28	JPV	TAL NSH
Total/NA	Prep	3550C			32.92 g	1 mL	258983	06/24/15 11:27	LDC	TAL NSH
Total/NA	Analysis	8270D		1	32.92 g	1 mL	260232	06/28/15 13:41	SNR	TAL NSH

Client Sample ID: 656 Camellia

Date Collected: 06/17/15 11:15 Date Received: 06/20/15 08:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			258547	06/23/15 10:29	MAA	TAL NSH

Client Sample ID: 656 Camellia

Date Collected: 06/17/15 11:15 Date Received: 05/20/15 08:40

Lab Sample ID: 490-81095-3 Matrix: Solid

Lab Sample ID: 490-81095-3

Percent Solids: 96.2

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.909 g	5.0 mL	258682	06/17/15 11:15	JLP	TAL NSH

TestAmerica Job ID: 490-81095-1

Client: Small Business Group Inc.

Project/Site: Laurel Bay Housing Project

Lab Sample ID: 490-81095-3

Client Sample ID: 656 Camellia Date Collected: 06/17/15 11:15 Date Received: 06/20/15 08:40

Matrix: Solid Percent Solids: 96.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	4.909 g	5.0 mL	260956	07/01/15 09:57	JPV	TAL NSH
Total/NA	Prep	3550C			31.76 g	1 mL	258983	06/24/15 11:27	LDC	TAL NSH
Total/NA	Analysis	8270D		1	31.76 g	1 mL	260232	06/28/15 14:05	SNR	TAL NSH

Lab Chronicle

Lab Sample ID: 490-81095-4

Matrix: Solid

Date Collected: 06/18/15 11:15 Date Received: 06/20/15 08:40

Date Received: 06/20/15 08:40

Client Sample ID: 1253 Dove

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			258547	06/23/15 10:29	MAA	TAL NSH

Lab Sample ID: 490-81095-4 Client Sample ID: 1253 Dove Date Collected: 06/18/15 11:15

Matrix: Solid

Percent Solids: 94.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.078 g	5.0 mL	258682	06/18/15 11:15	JLP	TAL NSH
Total/NA	Analysis	8260B		1	5.078 g	5.0 mL	261008	07/01/15 13:05	JPV	TAL NSH
Total/NA	Prep	3550C			31.98 g	1 mL	258983	06/24/15 11:27	LDC	TAL NSH
Total/NA	Analysis	8270D		1	31.98 g	1 mL	260232	06/28/15 14:30	SNR	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Method Summary

Client: Small Business Group Inc.

Project/Site: Laurel Bay Housing Project

TestAmerica Job ID: 490-81095-1

Method Method Description

8260B Volatile Organic Compounds (GC/MS) 8270D Semivolatile Organic Compounds (GC/MS)

Moisture Percent Moisture

Protocol SW846 Laboratory TAL NSH

SW846 EPA TAL NSH

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates,

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

10

Certification Summary

Client: Small Business Group Inc.

Project/Site: Laurel Bay Housing Project

TestAmerica Job ID: 490-81095-1

Laboratory: TestAmerica Nashville

Unless otherwise noted, all analytes for this laboratory were covered under each certification below

Authority South Carolina Program State Program **EPA Region**

Certification ID 84009 (001)

Expiration Date 02-28-16

The following analytes are included in this report, but certification is not offered by the governing authority:

Analysis Method 8270D

Prep Method 3550C

Matrix Solid

Analyte

1-Methylnaphthalene

Moisture

Solid

Percent Solids

TestAmerica (1) w(1)/(Y	Charleston
THE LEADER IN ENVIRONMENTAL TESTING Nashville, TN COOLER RECEIPT FORM	
Cooler Received/Opened On 6.19-15 @ 0840 490-81098 1. Tracking #	5 Chain of Custody
Courier: <u>FedEx</u> IR Gun ID 12080142	
2. Temperature of rep. sample or temp blank when opened:	F .
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO. (NA)
4. Were custody seals on outside of cooler?	YES NO NA
If yes, how many and where: ONE From FBOCK	
5. Were the seals intact, signed, and dated correctly?	GES NONA
6. Were custody papers inside cooler?	(YES.)NONA
I certify that I opened the cooler and answered questions 1-6 (intial)	
7. Were custody seals on containers: YES NO and Intact	YESNOMA
Were these signed and dated correctly?	YESNONA
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pape	
9. Cooling process: (Ice lice-pack lice (direct contact) Dry ice	
10. Did all containers arrive in good condition (unbroken)?	RESNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	ÆSNONA
12. Did all container labels and tags agree with custody papers?	(ÝE\$NONA
13a. Were VOA vials received?	YESNONA
b. Was there any observable headspace present in any VOA vial?	YESNO. (NA) 507
14. Was there a Trip Blank in this cooler? YESNO)NA If multiple coolers, sequen	A iA
Learnify that I unloaded the cooler and answered questions 7-14 (initial)	N
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YES NO NÃ
b. Did the bottle labels indicate that the correct preservatives were used	YES).NONA
16. Was residual chlorine present?	YESNO. (NA
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	N
17. Were custody papers properly filled out (ink, signed, etc)?	≯ESNONA

18. Did you sign the custody papers in the appropriate place?

19. Were correct containers used for the analysis requested?

20. Was sufficient amount of sample sent in each container?

I certify that I entered this project into LIMS and answered questions 17-20 (intial)

I certify that I attached a label with the unique LIMS number to each container (intial)

21. Were there Non-Conformance issues at login? YES...NO Was a NCM generated? YES...NO#

YES...NO...NA

MES...NO...NA

(YES...NO...NA

1

d

Relinquished by Time Received by TestAmerica:	1000 5//6//9 Police	tions:				6/18/15 1115 5	6 CAMELLIA 6/17/4 1115 5 X 1 2	CAMELLIA 6/16/15 1145 5 X 2	4 Bobwhite 6/15/15 1015 5 x	Date Sampled Time Sampled No. of Containers Ship Grab Composite Field Filtered Ice HNOs (Red Label) Het-(Blue Label)	ped	Loc: 490 pler Signature:	Som-ler Name: (Print) FRATE SAME	Fax No.:	Project Manager: Tom McElwee email: mcelwee@eeginc.net	City/State/Zip: Ladson, SC 29456	Address: 10179 Highway 78	Client Name/Account #: SBG - EEG # 2449	Nashville Division 2960 Foster Creighton To Nashville, TN 37204
patie Prince:	Natie Date					ži Ž		2 2 X	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	NaOH (Orange Label) H ₂ SO ₄ Plastic (Yellow Label H ₂ SO ₄ Glass(Yellow Label) None (Black Label) Other (Specify) M 2 Groundwater Wastewater Drinking Water Sludge Soll	el)	/		843) 879-BUDI					Phone: 615-726-0177 Toll Free: 800-765-0980 Fax: 615-726-3404
D& NO		Laboratory Comments: Temperature Upon Receipt: VOCs Free of Headspace?					X	×	× ×	Other (specify): BTEX + Napth - 82 PAH - 8270D	260	Project#:	Project ID: Laurel Bay Housing Project	TA Quote #:	PO#: 140G	Site State: SC	Enforcement Action?	Compliance Monitoring?	To assist us in using the proper analytical methods, is this work being conducted for regulatory purposes?
		Y	The state of the s							RUSH TAT (Pre-Schei Standerd TAT Fax Results Send QC with report	dule						Yes No	Yes No	

Login Sample Receipt Checklist

Client: Small Business Group Inc. Job Number: 490-81095-1

Login Number: 81095 List Source: TestAmerica Nashville

List Number: 1

Creator: Buckingham, Paul

Question	Answer	Comment	
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> <td></td>	True		
The cooler's custody seal, if present, is intact.	True		
Sample custody seals, if present, are intact.	N/A		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		
There are no discrepancies between the containers received and the COC.	True		
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	N/A		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Residual Chlorine Checked.	N/A		

ATTACHMENT A

NON-HAZARDOUS MANIFEST

	MON HAZADDOUG MAANIEGEZ	1. Generator's	US EPA ID No.	· · · · · · · · · · · · · · · · · · ·	lanifest Doc l	No.	2. Page 1	of			
	NON-HAZARDOUS MANIFEST		,				1				
	3. Generator's Mailing Address:	1	Generator's	Site Address (If	different than ma	ailing):	A. Manife	st Number	1		
	MCAS BEAUFORT	*					10/	MNA	01519	125	
	LAUREL BAY HOUSING						4.0	101200	Generator's		
	BEAUFORT, SC 29904		1					D. State	deficiator s	ID.	
	4. Generator's Phone 843-8	79-0411									
	5. Transporter 1 Company Name		6.	US EPA	ID Number						
							C. State T	ransporter's l	D		
							D. Transp	orter's Phone			
	7. Transporter 2 Company Name		8.	US EPA	ID Number						
								ransporter's l			
	9. Designated Facility Name and Site	Addusia	10.	LIC TO	ID Number		F. Transpo	orter's Phone			
	HICKORY HILL LANDFILL	Address	10.	US EPA	I I Number		C 54-4- F				
	2621 LOW COUNTRY DRIVE						G. State F				
	RIDGELAND, SC 29936						H. State F	acility Phone	843-9	87-4643	3
	MDGLD MVD, 3C 23330										
	11. Description of Waste Materials		1		12. Cor	ntainers	13. Total	14. Unit	1		
G		AVITU CAND			No.	Type	Quantity	Wt./Vol.	1. 101	lisc. Commen	LS
E N	a. HEATING OIL TANK FILLED V	WITH SAND			i i	175				1 +1	
E	11100 5	100000					4 =	-	-		1
R	b.	ile# 1026555	SC.		-		to more services		1		
A T	u.										
0	7000000000										
R.	WM Profile #										
	c.										
	WM Profile #						-				
ł	d.						-		-		
					1						
+	J. Additional Descriptions for Mater	ials Listad Abaya			V Dispes	al Location	1		1		
	3. Additional Descriptions for Mater	idis Listed Abbye			K. Dispus	ai Lucatioi					
					Cell				Level		
					Grid						
	15. Special Handling Instructions and	Additional Inform	mation	10.0	7 7	# T		-7/10	97.3	70	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*			11.00		_ ×				
	1) w 75 \		1	0-8/11	16.0	711-120	3 41	- 17			4.1
	Purchase Order #	45, 91.		EMERGENCY CO	ONTACT / PH	ONE NO.:	0)	7.7			
	16. GENERATOR'S CERTIFICATE:			30,14.3			10	F 3473			
	I hereby certify that the above-descri	bed materials are	not hazardous	s wastes as def	ned by 40 CF	R Part 261	or any appli	cable state la	w, have beer	n fully and	1
1	accurately described, classified and p Printed Name	ackaged and are		ition for transp nature "On beh		rding to ap	plicable regu	lations.	1 11 11 11		
	rinited value		Jigi	nature on ben	all OI				Month	Day	Year
Т	17. Transporter 1 Acknowledgement	of Receipt of Ma	terials								
R A N	Printed Name			nature					Month	Day	Year
S											1000
PO	18. Transporter 2 Acknowledgement	of Receipt of Ma	terials								
R	Printed Name		Sig	nature					Month	Day	Year
E											
	19. Certificate of Final Treatment/Dis	enocal									L
F	I certify, on behalf of the above listed		v that to the h	est of my know	uladga tha at	anyo docer	ihad wasta w	ine managed	ta assuultas	es estate ett	
F A C	applicable laws, regulations, permits	and licenses on th	ne dates listed	above.	ricuge, tile di	Jove-uescr	inen maste M	ras managed	iii compiland	e with all	
L	20. Facility Owner or Operator: Cert				covered by th	nis manifes	st.			-	
T	Printed Name			nature					Month	Day	Year
	White- TREATMENT STORAGE DISPO	DEAL EACHITY CO	DV DI	US- GENERATO	D #3 CODY	-	47	HOW CENED	ATOD 24 CC	DV	

Appendix C Regulatory Correspondence

August 3, 2016

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: No Further Action

Laurel Bay Underground Storage Tank Assessment Reports

Dated July 2015, November 2015

Dear Mr. Drawdy:

The South Carolina Department of Health and Environmental Control (the Department) received the Underground Storage Tanks (USTs) Assessment Reports for the addresses listed in the attachment. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seg., as amended).

The Department has reviewed the referenced assessment reports and agrees there is no indication of soil or groundwater contamination on these properties and therefore no further investigation is required at this time.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at petruslb@dhec.sc.gov or 803-898-0294.

Sincerely,

Cc:

XIRTS

Bureau of Land and Waste Management

Laurel Petrus, Environmental Engineer Associate

Russell Berry, EQC Region 8 (via email) Bryan Beck, NAVFAC MIDATLANTIC (via email)

Craig Ehde (via email)

Attachment to: Petrus to Drawdy
Subject: No Further Action
Dated August 3, 2016

Laurel Bay Underground Assessment Reports for (28 addresses/29 tanks)

309 Ash	1001 Bobwhite
477 Dogwood Tank 2	1020 Foxglove
563 Dahlia	1063 Gardenia
659 Camellia	1065 Gardenia Tank 2
1213 Cardinal	1100 Iris Tank 3*
114 Banyan	1139 Iris
158 Cypress	1141 Iris Tank 2
459 Elderberry	1174 Bobwhite
611 Dahlia	1184 Bobwhite Tank 1
656 Camellia	1184 Bobwhite Tank 2
671 Camellia	1220 Cardinal
678 Camellia	1253 Dove
724 Bluebell	1332 Albatross
732 Bluebell	1387 Dove
934 Albacore	